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Current three-dimensional approximate-factorisation schemes do not appear capable of the 
same degree of optimisation as their two-dimensional counterparts. This is due principally to 
the greater complexity engendered by the third factor that arises in going from two to three 
dimensions. A new two-factor scheme is proposed which may be optimised with much greater 
ease and gives reliable and rapid convergence for all problems so far attempted. Applications 
include numerical grid generation and the calculation of transonic potential flow. 0 1988 

Academic Press, Inc. 

1. INTRODUCTION 

Approximate-factorisation (AF) schemes have been used wi.dely for the numerical 
solution of elliptic partial differential equations (PDEs), particularly those found in 
the field of computational fluid dynamics. Two examples of where elliptic PDEs 
arise in this subject are in grid generation [ 1,2] (where solutions of Laplace or 
Poisson equations are frequently used to obtain a smoothly varying computational 
grid that conforms to the boundaries of the computational region) and in the 
solution of potential flow problems. Ballhaus et al. [3] introduced the two types of 
AF schemes regularly used for two-dimensional (2D) steady flow problems and 
named them the AFl and AF2 schemes. The simpler scheme, AF1, appears to be 
less suited to transonic flow problems than AF2, and the latter scheme has enjoyed 
considerable success (see Holst [4] and Baker [S]). Catherall [6] presented an 
analysis of the AFl and AF2 schemes and showed how to optimise them so that 
rapid convergence was assured. 

For three-dimensional problems rapid convergence has been much more difficult 
to achieve. Holst’s [7] scheme has been the most successful for certain problems. 
Attempts by Baker and Forsey [S] to produce a version of Holst’s scheme with 
faster convergence were only partially successful, the actual speed of convergence 
obtained depending on the particular problem being solved. 

In this report a theoretical analysis of the three-dimensional version of AFl and 
Holst’s version of AF2 is described. It is shown that the analytical optimisation that 
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was possible for the two-dimensional schemes [6] is impractical for the t 
dimensional schemes. Another three-dimensional version of AF2 is then intr 
but having only two factors rather than three. This two-factor scheme can 
be optimised and is shown to give rapid convergence for all examples te 
discussion is included on the important matter of what boundary conditions 
be applied during the intermediate stages of a multifactor scheme. 

2. TWO-DIMENSIONAL AF SCHEMES 

As a convenient introduction to AF schemes in general, a brief resume of the 
two-dimensional schemes will be given. (For a more detailed exposition of the 
various techniques used, see Ref. [9], which provides a valuable introduction to the 
subject.) 

The finite-difference equation, 

results from replacing the derivatives in the general partial-differential equation, 

( h&+c-g+ll $&KZ)=O > 
by central differences. A and C are positive, but not necessarily constant terms. 
They may be functions of ~5 and its first derivatives and they often contain trans- 
form derivatives resulting from a transformation from physical, Cartesian, space 
(x, z) to computational space (X, Z). The term D contains all the mixed and lower 
order derivatives (and thus their fiiite-diffeJenc> analogs). Backw&rd and forwar 
differenFszre denoted above by 6X and SX, 6X #) = bi+ I - (aj; 6X dj = 4i - die, ; 
hence SXSX~j~~i+l-2~i+~i-l. 

Equation (I) cannot be solved directly, by virtue of the complexity of the com- 
plete equation set that it represents and its possible nonlinear nature. Recourse 
must be made to iterative schemes for the solution of the equation. An iterative 
procedure is introduced of the form 

N(A) = U4”), (2) 

where the superscript n indicates the stage or level of the iteration, A is define 
4 n + ’ - #“, the increment in solution during the iteration cycle. N is an operator 
that is simpler (in some sense) than the original operator L. In the approximate fac- 
torisation (AF) procedure N consists of two factors, each of which is easily inverte 

The AFl scheme, originally devised by Peaceman and Rachford ClO], may be 
written as 
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AFl: 

A-‘(a - AA s”x fEic)(cc - AC s2 d&T) A,, = aoL(@,), (3) 

where a is termed an acceleration parameter, 0 a relaxation parameter, and L is a 
function of A and C, the precise form of which is crucial in determining the speed of 
convergence of the iterative method. The actual procedure used at each stage of the 
iteration is to solve in turn the two sets of equations 

I-‘@.44 s”x~~) Fi,k=aaL(@J (44 
(a-AC Si 62) Ai,k = Fi,k (4b) 

for all points (i, k) to obtain A for each point, then increment the solution to obtain 
d n+’ = 4” + A and go onto the next iteration. The cycle of iterations is terminated 
when the maximum value of A is below some predefined tolerance. Each of 
Eqs. (4a) and (4b) is easily solved, and careful choice of o,,& and a sequence of 
values for a results in rapid convergence. In Ref. [6] optimum forms of the AFl 
scheme are shown to exist, one with 2 = l/C, and CJ = 2 and the other having 
A= l/fiC and o=$ 

An alternative decomposition or factorisation of the finite-difference equation (1) 
with two factors, called AF2, may be written as 

AF2: 

A-‘(a-AA &)(&‘-AC& 6%) Ai,k=~d(&J. (5) 

In Ref. [6] it is shown that the optimum version of AF2 has 1= l/G with g = j, 
and a geometric series as a sequence of values for CL This result is still valid if the 
order of the factors is reversed, the roles of X and Z are interchanged, or if the 
splitting of the second difference into two first differences is performed in the reverse 
way. AF2 has usually been found to be faster than AFl, particularly when used to 
calculate transonic flows. In Ref. [6] it is demonstrated that a slight modification of 
the optimum form that avoids the evaluation of square roots resulting from the 
form of 1 may be made, while retaining the rapid convergence of the original form. 
The important feature is the way in which the transform derivatives are split 
between the factors. 

3. THREE-DIMENSIONAL AF SCHEMES 

In this section three schemes are considered, two of them having three factors 
and the third being a new scheme. containing only two factors. In searching for 
other three-dimensional schemes, the following principle emerged from empirical 
and analytical investigations: 

While it is beneficial to split one of the second differences between different fac- 
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tors (cf. AFl and AF2), in that it speeds convergence particularly when calculatin 
transonic flows, stability cannot be assured if more than one of the second differen- 
ces is split. 

The analysis in this section will be confined to the homogeneous difference 
problem 

with A, B, and CB 0. Lower order terms and cross-derivatives may be present in 
practice; their inclusion does not appear to impair significantly the performance of 
an optimised scheme. 

3.1. Three-Dimensional Version of AFl 

The three-dimensional version of AFl may be written as 
3DAFl: 

As in two dimensions, the choice of 1, a, and TV will affect critically the s 
convergence. If the error after the nth iterative cycle is en (i.e., 4” = @ + en, where @ 
is the exact solution of Eq. (6), then d = en+’ -en, and Eq. (7) may be written as 

N(e”+’ -e”) = a20L(en)9 is) 

where it is assumed, for simplicity, that L is a linear operator so that L(@ i-e”) = 
L(@) c L(e”) = L(e”), from Eq. (6). A von Neumann stability analysis [6] is perfor- 
med by expressing the error as a multi-dimensional Fourier series 

e”(X, Y, 2) = c G”(p, q, Y) exp(ipX) exp(iqY) exp(irZ). 
P34J 

(NB. Here i denotes the square root of - 1, and not the index in the X direction.) 
Equation (9) is substituted in Eq. (8), and each Fourier component is consi 
separately. This analysis is only strictly valid for constant A, B, and C a 
periodic boundary conditions, but in practice it often yields useful results for more 
complex situations. It may be shown, for the 3DAFl scheme given by Eq. (7), that 
the amplification factor j3 is given by 

(a - 4AAP)(a - 4nBQ)(u - 4KR) 
+ 4a*l(AP + BQ + CR)(2 - CT) + 128i3ABCPQR 

(ct + 4AAP)(a + 4nBQ)(ct + 41CR) (10) 

where P=sin2 ($p AX), Q = sin* (Jq AY), R= sin2 ($r AZ), and AX, AY, and AZ 
are the mesh spacings in the X, Y, and Z directions, respectively. For stability, 
which is a necessary condition for convergence, the amplification factor /I must be 
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less than 1 in magnitude and this is assured for 0 < 2. For rapid convergence I/?/ 
must be as small as possible, and a, L, and u need to ,be chosen to make this so. In 
two dimensions (putting B = 0 in Eq. (lo)), /I can be made equal to zero by setting 
0 = 2 and a/n = 4CR (leading to the immediate annihilation of errors at particular 
frequencies and, hopefully, a reduction of errors at other frequencies). However, 
a similar result cannot easily be obtained for three-dimensional problems. 
Nevertheless, the choice v = 2 and ~/a = 4CR can be expected to produce good, if 
not optimum, convergence for three-dimensional problems where the solution 
varies only slowly in either the X or Y direction, compared with the variation in the 
2 direction, and the initial approximation for 4 is taken to be a constant at the 
start of the iterative sequence. This is not inconsistent with the common practice of 
setting 4 to zero initially, apart from boundary values. In such cases, the error 
(Eq. (9)) is almost independent of X or Y, and G” will be small for all finite values 
of p or q, respectively. Therefore it is only necessary to consider values of G 
corresponding to zero values of p or q, so that the final term in the numerator of 
Eq. (10) may be neglected because P or Q is zero. Hence a version of 3DAF1, 
which is moderately fast in certain cases, may be obtained from setting ,J = l/C, 
a=4R, and c =2, i.e., 

(G-A ik.&)(,- B/C&6’)(cd&%) Ai,j,k=2~2L(qS;,j,k). (11) 

The relation CI = 4R ( =4 sin2($r AZ)) is applied by choosing a geometric sequence 
of values for a ranging from 0(4Z2) to 4. 

The solution at each iteration level proceeds in three stages: 

(Ccl -A S”x &) Fi,j,k = 2a’L(&,,); 

(CU-B&%)G~,~,~=CF~,/,~; 

(a - Si S’i) Ai,j,, = Gij,k. 

This version of 3DAFl has the added advantage of a particularly simple third 
stage, not involving A, B, or C. 

3.2. Three-Factor Version of AF2 
Equation (7) is an obvious extension of the two-dimensional version of AFl. The 

three-dimensional version of AF2 is, however, not so obvious. Holst [7] and Baker 
and Forsey [S] use the following scheme? here termed 3DAF3, where the final 3 is 
used to indicate that it is a three-stage factorisation, 

3DAF3: 

I-1[(cr-IA~~6tX)(a-~B~~6CY)-a2Eg1](~-i.C~~)Ai,j,k=a2aL(Ql;j,k)i (12) 

where ET’ is a shift operator, defined by E;‘Ak = A, _ 1. 
Application of a von Neumann stability analysis produces an expression for the 
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amplification factor p that is rather long and will not be repeated here. Again, 
stability is assured if g < 2, but whereas in two dimensions an optimum choice of A 
and u may be obtained by minimising /I with respect to I (or CX), applying the same 
criteria in three dimensions becomes impossibly complicated. If the solution varies 
only slowly in the Y direction (BQ is small compared with AP and CR, following 
the argument in Section 3.1) then I = 1 Jm and c( = 2 ,,6 is near optimum; 
whereas if the solution varies slowly in the X direction the appropriate values are 
L=l/mandcr=2&.1 n either case the problem is quasi-two-dimensional. 

Holst [7] in his TWING code uses the full-potential equation to compute the 
flow over a wing using a grid based on cylindrical polar coordinates. With X taken 
as the angular ordinate around each spanwise section, Z the radial ordinate and Y 
the spanwise ordinate, Holst sets ;1= l/C, o = 1.8, and c1= 2 $. This has t 
advantage that A, B, and C do not require evaluating in the third stage, but it 
not clear why this should lead to rapid convergence. However, it was shown in 
Ref. [S] that for rapid convergence it is important to choose 1, so that the 
factorisation is near optimum in the far-field. Furthermore, according to Baker and 
Forsey, who employ a similar coordinate system in Ref. [8], A/C -+ 1 far from t 
wing. Accordingly, putting I = l/C is a good approximation to ;1= l/G which 
was shown, in the last paragraph, to be near optimum when there is only a small 
variation of the solution in the Y direction. Holst’s scheme may therefore be 
expected to give rapid convergence for certain problems, but this cannot 
guaranteed in general. 

In Ref. [S], Baker and Forsey attempted to modify Hoist’s scheme by making 
some allowance for the effects of grid stretching. They chose /z = 2 dZ( B d Y”)“/C 
with v = 0.1 and 2 measured in the radial direction. This worked extremely well for 
an isolated wing, but was much less successful when the computation of t 0W 
about a wing-body combination was attempted. 

In the examples given later in this paper Holst’s [7] version of 3DAF3 (with 
% = l/C) is used for comparison with the new scheme detailed below. 

3.3. Two-Factor Version of AF2 
The major disadvantage of three-factor schemes is that they are difficult to 

optimise analytically unless the solution is quasi two-dimensional. This is clearly a 
severe limitation on any AF scheme. However, three-dimensional equivalents of 
two-dimensional AF schemes do not have to contain three factors. In contrast to 
AFl, there is a two-factor version of AF2 readily available: 

[C/A, - (A/.&) S”x- (B/L,) ~~&‘] 

x [A, + A,S’-- A3 2 SE?] Ai,& = crL(q5;i,k). (13) 

Application of a von Neumann stability analysis yields an expression for the 
amplification factor which can be minimised with respect to J-i, I,, and A3 by 
setting AGIf = 4BCQl: = 16ABQRLz. Details of some of the analysis may be foun 

581/78/l-10 
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in the Appendix. This result leads to the form (termed here 3DAF2 to denate that it 
is a two-stage scheme), 

3DAF2: 

Stability is assured if 0 62, but an optimum value for 0 must be found by 
numerical experiment, unlike the result for two dimensions where optimum values 
for (T can be found by analysis. In the examples investigated in this report the value 
c = 2 has been found to give the most rapid convergence. The analysis detailed in 
the Appendix suggests that the best value for Q should lie in the range 1.5 < 0 d 2.0. 
With a particular sequence of values for a, and a2 the errors associated with the 
frequencies corresponding to these values will be reduced more rapidly than those 
of other frequencies. The overall speed of convergence will, however, depend on the 
largest amplification factor. In two-dimensional problems it is possible [6] to 
devise a sequence of values for the acceleration parameter which can be shown, 
analytically, to be near optimum. This does not appear to be possible in three 
dimensions, although there are indications that sequences similar to the two-dimen- 
sional ones may be applicable. These sequences are used in the following examples 
(Section 5). 

4. BOUNDARY CONDITIONS 

Boundary conditions will normally be applied at both ends of the X, Y, and 2 
ranges and will be either Dirichlet (4 prescribed) or Neumann (the derivative of 4 
normal to the boundary, d,, is prescribed). Most rapid convergence usually results 
from ensuring that all boundary conditions are implicitly satisfied at all stages of 
the iterative procedure. Thus at the start of the iterative cycle which progresses 
the solution from iteration level n to level n + 1, 4” can be assumed to satisfy all 
boundary conditions. The boundary condition prescribed for the increment, 
A (++l - $“), is thus either A = 0 or d, = 0 for Dirichlet or Neumann boundary 
conditions, respectively. 

Boundary conditions are also required for the intermediate variables. For exam- 
ple, in order to solve Eq. (4a), boundary conditions on F need to be prescribed. If a 
Dirichlet condition is to be applied on 4 at i = 1 then A,,, = 0 and from Eq. (4b) 

F,,, = (a - IC 62 S”z) Al,k = 0. 

If a Neumann boundary condition is applied for 4 at i= 1 then the central 
difference form of the condition requires A,,k = A,,,. Thus, from Eq. (4b), 

F2,k - FO,k = (a - K d’i S%)(A2,k -A,,,) = 0. 
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This principle applies to any of the two-dimensional or three-dimensional 
f@o$sations, provided the appropriate differeny expression is unsplit (i.e., a term 
6X 6X in L(d) is matched explicitly by a term 6X 8%’ in N(4) (Eq. (2)), and it may 
be summarised as follows: 

Where the difference equation to be solved for an intermediate dependent 
variable, F, retains unsplit differences for the independent variable, the boundary 
condition to be imposed on F is F = 0 or F, = 0 when the boundary condition on 4 
is Dirichlet or Neumann, respectively. This type of boundary condition is ter 
straightforward. 

Where differences are split (for example, the 8% 8% terms in AF2), it is muc 
more difficult to devise an appropriate intermediate boundary condition. South an 
Hafez Ill], suggest how to devise a stable intermediate boundary conditio 
two-dimensional problems. If a Neumann boundary condition has to be appl 
z = 0 (k = 1) they suggest writing Gk- i = yGk at k = 1, where G is the interm 
variable whose boundary value is needed at k = 0. By performing a stability analysis 
locally at the boundary, stability limits on the value of y are found, and the above 
intermediate boundary condition enables the solution for G to be obtained during 
the first solution stage. Unfortunately, the technique cannot be extended 
three-dimensional problems. In particular, it cannot be applied to 3DAF3. 
ring forward to Section 7, where the three solution stages are set out for 3 
the condition 6, _ 1 = yGk needs to be applied at the first stage, but cannot be, since 
G is evaluated, not at this stage, but at the second. 

Where differences are split, the following techniques are recommended for inter- 
mediate boundary conditions: 

(i) Try to arrange for the intermediate boundary condition to apply at the 
“more innocuous” end of the computational range. For example, if one end of the 
computational region is a solid surface and the other a far-field boundary, then 
application of an intermediate boundary condition at the far-field boundary is less 
likely to induce instability. 

(ii) If for any reason recommendation (i) cannot be followed, then the 
and Hafez method should be attempted to determine an appropriate interm 
boundary condition. 

(iii) If neither of the above is successful, put F= 0 at the boundary an 
for the best! 

5. THE THREE-DIMENSIONAL FACTORISATIONS SUMMAREED 

The following sequence of values for CC was shown in Ref. [6] to be near 
optimum for two-dimensional (2D) problems and will be used in all the three- 
dimensional (3D) examples shown later: 

(K- l)l(Nz-11 
for K= 1, 2, . . . . N,, (15) 
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where al, a,,, and N, are specified below. This sequence is repeated every N, 
iterative cycles. In two-dimensions a slight improvement in convergence rate was 
obtained [6] by repeating the end points in this range, but this has not been 
investigated here. 

The three-dimensional AF schemes which will be compared in the next two 
sections are now defined. 

3DAFl: The factorisation given in Eq. (11) is used. In the sequence (15) 
N,=8, a,=4, u,=AZ2. 

3DAF3: The Holst version of the scheme (from Ref. [7]) in Eq. (12) is used, 
so that I = l/C, c = 1.8, N, = 8, cth = 2, and CQ = dX, except for the transonic flow 
problem in Section 7, where better results were obtained with tll = 2 dX. 

3DAF2: The factorisation given in Eq. (14) is used, with 0 = 2.0, N, = 6, 
ulh = @2h = 2, ui,= dZ, and clzI= d Y, except in the transonic flow problem 
(Section 7), where uil = 1.75 AZ and ct2, = 1.75 A Y produced faster convergence. 

The values chosen for all the schemes described above are the result of numerical 
experiments to determine those combinations giving the fastest convergence rate for 
the examples in the next section. 

6. EXAMPLE-SOLUTION OF THE THREE-DIMENSIONAL LAPLACE EQUATION 
ON A STRETCHED COMPUTATIONAL MESH 

Laplace’s equation 

is to be solved inside a unit cube with boundary conditions defined below. To 
investigate the ability of the various AF schemes to respond to non-uniformity in 
meshes the following stretchings are applied: 

x=l+ [tan-‘(4x- WI 
2 (2 tan-’ a) ’ 

y= (tan-’ (W) 
tan-lb ’ 

z = (tan-’ (~2)) 

tan-’ c 

A consequence of these stretchings is that the difference equation (6) will have 



APPROXIMATE-FACTORIZATION SCHEMES 147 

and L(4) (but not N(A)) will contain some first derivatives In the examples shown 
here a, b, and c are all set equal to 5 and there are 64, 24, and 16 grid intervals in 
the X, Y, and Z directions, respectively. Other variations were tried, but not repor- 
ted here, with similar comparative results emerging. Two problems are considered. 

PROBLEM 1. Solution with rapid z variation. With boundary conditions I$ = 
x=O,x=l,y=l,andz=l, 

d,=O on y=o 

4z= -($)cosh($)sin(nx)cos(F) on z=o, 

the exact solution is 

4(x, y, z) = sin(rcx) cos 2 sinh 
2 

$(i-z)). 

This solution varies much more rapidly in the z direction than in either the x or y 
directions. 

Figure 1 shows the convergence history of the three schemes used for Problem 1. 
The descending curves are of the maximum residual plotted on a logarithmic scale 
against the iteration number. The residual at each point is defined as the value of 
[L(d)1 at that point divided by the maximum value of lL(#)( at the start of t 
computation. Initially d is set to zero inside the unit cube and on the boundary of 
the cube, the Neumann boundary conditions being enforced by the use of dummy 
points outside the unit cube. 

The other set of curves is for a typical quantity obtained from the solution, in this 
case the value of C$ at x = 4, y = z = 0, divided by its finally converged value. For 
this problem the three AF schemes yield similar levels of performance. 3DAF2 is 
the fastest, but it is closely followed by 3DAF3 and even 3DAFl performs quite 
well. The values used for the various parameters (G, N,, etc.) are those given in the 
previous section and offer the fastest rates of convergence determined by n~rneri~a~ 
experiments. Reversing the direction of sweep in the z direction for 3DAF3 slowed 
the convergence rate slightly. 

It is interesting to observe the effect of using a constant value for the acceleration 
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FIG. 1. Problem 1: Laplace’s equation with rapid z variation. 

parameter. In Fig. 2, instead of using a sequence of values of ~1, and a2 as in 
Eq. (15), the performance of 3DAF2 is shown when constant values for Eq. (1.5) are 
chosen. It emerges that the most rapid convergence for the quantity q is achieved 
for K= 6 (~1~ and 01~ = dZ and dY, respectively), but that the residual reduces 
fastest for the fourth value in the sequence (in this case CI~ = 4 dZ and a2 = 4.7 d Y). 
This exercise demonstrates that it is important to use a sequence (such as Eq. (15)) 
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FIG. 3. Problem 1: 3DAF2 versus SLOR. 
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rather than constant values for cc It may well be that further improvement in 
convergence rates is possible by varying CJ as well as a, but this has not been 
investigated here. 

In Fig. 3 the performance of 3DAF2 is compared with the more conventional 
successive line over-relaxation method (SLOR). A relaxation factor of 1.95 (which 
gives the fastest convergence rate for this example) has been used. It is apparent 
that 3DAF2 offers a dramatic speed improvement over even this optimised SLOR. 

PROBLEM 2. Solution with rapid y variation. This problem is identical to 
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FIG. 4. Problem 2: Laplace’s equation with rapid y variation. 
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Problem 1, except that the boundary conditions at y = 0 and z = 0 are changed as 
follows: 

br,= -($)cosh($)sin(nx)cos(y on y=O 

lpz=o on z=O. 

The analytic solution for Problem 2 is the solution for Problem 1 with the roles 
of y and z interchanged. The solution thus varies rapidly in the y direction. Figure 4 
shows the convergence history for the three schemes, and it may be seen that only 
3DAF2 maintains its performance, whereas the other two schemes show a 
degradation in rate of residual reduction for this problem. This demonstrates that 
3DAF2 is in some sense problem independent, whereas the other two schemes are 
only quasi-optimum for certain problems. No improvement can be obtained for 
3DAFl and 3DAF3 by varying parameters such as cr, IVz, or a. 

7. EXAMPLE-SOLUTION OF THE QUASI-CONSERVATIVE SMALL DISTURBANCE 
POTENTIAL EQUATION FOR TRANSONIC FLOW 

We take the simplest form of the three-dimensional small disturbance potential 
equation for compressible flow near M, = 1, 

where p2= 1 -MZ,, K= M2,(2 + (y - l), M, is the free-stream Mach number, and 
y the ratio of specific heats (= 1.4). 

The example chosen here is non-lifting flow at a Mach number of 0.85 over a 
spherical bump (the three-dimensional equivalent of the circular arc aerofoil) whose 
maximum height, t, is 10% of its maximum chord. The boundary conditions are 
thus: 

4-0 as x2+y2+z2-+co; 

4-v = 0 on y = 0 (a symmetry condition); 

$;=O on z=O; x2+y2>$; 

4; = -x.21/(0.25 - 3) on z=O, x2+y2<& 

The grid stretchings employed are 
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O<X<;(l--a,), w- l/2(1 -a,)) 1 b ’ 

f(l-a,)<X<f(l+a,), 
x = v- l/2) 

a, ’ 
W- l/2(1 + a,)) 1 b ’ 

with b=(l -a,@ and a,=0.5; 

1 
z 

a,< Y-c 1, 

with b = (2 - a,)/n and ay = 1.0; 

O<Z<l, *=($)tan(F) 

with a= = 10. 
Three views of the grid are presented in Fig. 5. In Fig. 5a all grid lines (except, of 

course, for those at infinity) are shown in the plane z = 0 and in Fig. 5b a close-up 
of Fig. 5a is shown in the neighbourhood of the solid surface. Figure SC shows a 
close-up in the plane y = 0. 

In transformed space the small disturbance equation is now 

the subscripts denoting differentiation. 
A quasi-conservative finite difference solution results from solving, in conjunction 

with the boundary conditions, the set of difference equations 

where 

Ti=B2-K~i(li+,,j,k-~i-l,j,k)/2; 

pi= 1 if Ti>O and 0 otherwise; 

Ai = X,( i)/AX, Bj = YJ j)/A Y; c, = Z,(k)/AZ. 
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FIG. 5. (a) Grid in plane z = 0 for transonic flow problem. (b) Close-up of Fig. 5a. (c) Close-up of 
grid in plane y = 0 for transonic flow problem. 
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The three AF schemes under consideration now take the forms: 
3DAFl: 

[Cic~-BjzY Bj-1/2 $Y] G,j,,= CiFi,j,k; 

[ct - fi &] Ai,j,, = Gi,jk. 

3DAF3: 

[c,s(-d{p,Tj&k.~ l ~,~~~+(l-~i-~)Ti-~Ai-~Ai-~/~~~}]F~,j 

= E~oL($;,,J + CiU2Gi,j,k- 1; 

[C,a - nBj 8 Bj- 1,2 SF] G,,, = Fi,j; 

[&-z]Ai,j,i=c,,/c; 

with I = l/C,. 
3DAF2: 

The following points should be noted: 

(i) The upwind differencing in the X direction when the flow is locally 
supersonic has not been fully simulated in any of the AF schemes. Nevertheless, 
because it is done correctly in L(d) then, provided convergence is achieved, the 
solution should be unaffected. The reason for this omission in the first two cases is 
to maintain tridiagonality, so simplifying the matrix inversion problem. In the third 
case values of F are not available for lower values of i. The upwind differencing is, 
however, partially simulated in all cases: the term (6% Ai- 1,2 8%) Fi when expanded 
becomes Ai_ 1,2(Fi - Fi- i) - dip 3,2(Fj- 1 - Fj- 2). Omitting the second half of 
this term is equivalent to using values for 4, (i-3,2 from the previous iteration 
level. Similarly, if a forward difference &which o5urs when treating the full- 
potential equation) were involved, (6X Ai+ ij2 6X) Fi = Ki+3,2(Fi+ 2 - Fj+ 1) - 
Ai-+ l/2(4+ 1 -f’i) an d omission of the first half of the term would be equivalent to 
evaluating 4, ii + 3,2 from the previous iteration level. In practice, the omission of 
part of the upwind term from the factorisation has not been found to cause any 
problems. 
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(ii) In this quasi-conservative formulation it is not always convenient to 
evaluate transform derivatives within the factors precisely as within L; see, for 
example, the third factor of 3DAFl. In two-dimensional lifting flow it has 
sometimes been found important, for convergence, to have the same form within L, 
but in the present exercise it does not appear to m$t_“r. In fa$, replacing a - S’i 8% 
in the third factor of 3DAFl by c( - ( l/zik) 62 C,- i,* 6Z actually made con- 
vergence slower. 

(iii) In 3DAF2 the X second difference is split between the two factors, and, 
according to the earlier analysis, T, as well as 2: should be split between the two 
factors. This would be most inconvenient to apply since it would involve evaluating 
Ti during the second as well as the first stage (where it has to be evaluated for 
inclusion in L(d)) and also involve costly square roots. In Ref. [6] it was shown 
that the most important feature affecting convergence speed is the correct splitting 
between the factors in the far-field. Here Ti N p” in the far-field and this should be 
split, as above, so that T,//? is included in the first factor and /? in the second. 

The pressure distribution on y=z= 0 for this problem (the pressure coefficient 
C, is evaluated as C, = -24,) is shown in Fig. 6, the two dips in the distribution 
corresponding to the leading and trailing edges, and the convergence of the three 
schemes is compared in Fig. 7. In this case the quantity q which is plotted is the 
value of C, at the top of the bump (at x =y = z = 0 in the small disturbance 
simulation) divided by its converged value. Once again 3DAF2 produces the most 
rapid convergence, with 3DAFl performing the worst. Many other cases were run, 
varying the Mach number, height of bump, grid stretchings, and the grid dimen- 
sions, and in every case 3DAF2 out-performed the other two schemes, as it also did 
with the non-conservative small disturbance equation. 

8. COMPUTATION TIMES 

All the computational examples were run on a Cray 1-S computer. A particular 
advantage of the AF schemes when a vector processor is used is that all DO loops 
may be vectorised. For example, in 3DAF2, the evaluation of L(4) and the coef- 
ficients of the unknowns Fj,j,k can be performed in parallel for all points on an 
i= constant plane. The resulting tridiagonal matrices may then be inverted in 
parallel along each j= constant column. For a 62 x 24 x 16 mesh (i.e.., nearly 25,000 
points) the time taken for each of the AF schemes to advance one iteration level 
varied between 0.05 s for Problems 1 and 2 to 0.07 s for the transonic flow problem. 
Times for complete solution ( a reduction in the maximum residual by five orders of 
magnitude) via the 3DAF2 scheme of the examples given varied between 2 and 5 s. 
The SLOR scheme applied to Problem 1 was actually slower per iteration cycle 
(0.075 s) than the AF schemes, because less of the code was vectorisable, and the 
complete solution time was about 20 s, ten times that for 3DAF2. 
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9. CONCLUDING REMARKS 

The optimisation of three-dimensional approximate factorisation schemes has 
been addressed in the preceding sections. It has been shown that schemes involving 
three factors may be optimised in a very approximate sense for particular problems, 
but that the particular form of the schemes so obtained will not necessarily perform 
well on other problems. By contrast, the two-factor scheme described in its 
optimum form in this report, performs well on all problems that have been 
addressed so far. Applications for the method include numerical grid generation 
and subsonic or transonic potential flow calculation. The scheme has also been 
applied to three-dimensional transonic potential flow problems with similar success, 
though these are not reported here. An additional complication when treating the 
full potential equation is the presence of cross-derivative terms. These must, of 
course, be included in the residual L(d), but it has not been found necessary to 
modify the AF factors to allow for them, even when the grid is not orthogonal 
(examples run have included regions with a 35” departure from orthogonality with 
no noticeable deterioration in performance). 

Despite the advent of multigrid techniques, which are capable of achieving faster 
convergence rates (perhaps by a factor of 2 or more for a 4-level multigrid scheme) 
in terms of computation time than AF schemes without multigrid, by virtue of the 
reduction of low frequency errors on a coarse grid, AF schemes are still of great 
utility. 

They are easy to program, easily produce vectorisable code, are more economic 
in computer storage than multigrid, are simple to apply, and are fast and effkient 
once optimum forms have been identified. In Ref. [6] and the current paper these 
optimum forms have been deduced and these two papers thus form user guides to 
the application of AF schemes in both two and three dimensions. 

APPENDIX: ANALYSIS OF 3DAF2 

Here a von Neumann stability analysis is performed (as in Section 3.1) for the 
3DAF2 scheme described by Eq. (13). The analysis is simplified by the substitutions 

(One of the 2s is effectively redundant.) After some algebra it may be shown that 
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+ [the same expression but with (T = 01. (A-2) 

For stability we require I/?[ < 1, and this is assured if 0 <(r Q 2. 
For rapid convergence we need to choose 5 and q so as to minimise [/?I. Values of 

t and 9 which satisfy a(j?‘)/al= @@“)/a~ = 0 are 5 = q = 1. This may be seen by 
writing Eq. (A.2) as 

82 = (24 - au)’ + w2 
u2+w2 ’ 

where u and w are functions of 5 and q while v is not. Therefore a(/?‘)/@ = 0 when 

0 2 (u’-w~-ouu)+w(~)(2u-4v)=o, 

with a similar expression, involving r] derivatives, giving 8(/I”)/@ = 0. One way of 
fulfilling these conditions is to set w = &/a< = du/8~ = 0 and, by comparing with 
Eq. (A.2) it may be seen that this occurs when 5 = r] = 1. This may not be the only 
solution but it has the virtue of simplicity. A simple solution is essential as it is 
necessary to express each 2 as a function of A, B, and C multiplied by a function of 
P, Q, and R, as shown below. 

It is easy to demonstrate that 4 = ye = 1 minimises 181 with respect to 5 and q, 
provided B < 1. However, for 1 < G 6 2 it has not been possible to prove that, in all 
cases, this solution gives a minimum rather than a maximum. It should be noted, 
however, that stability is still assured, by choosing B < 2, even if the choice of < and 
q is not optimum in some small regions. 

Setting r = q = 1 in Eq. (A.2) we obtain 

a(AP + BQ + CR) 

+AP+BQ+CR’ 

We shall attempt to minimise the largest value of Bmin by a suitable choice of 0. 
First, stationary values of Brnin with respect to BQ and CR are found. These occur 
when 

giving 

l/24 1 + JGG) 
1+2P+JizG~ 
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The maximum value of Pmin will occur therefore either when BQ = CR=0 (so 
that jImin = / 1 - (~1 ), or when 

BQ = CR = 0.25A( 1 + &%?) 
and 

P=Oor 1 (fimin= 11 -+I or (1 --f0l). 

Whichever of these three values is largest depends on CT, and it would appear t 
p = 1 should minimise the largest value. However, although P, (2, and R may take 
small values they are never zero, so Prnin never takes the value / 1 - ~1, and so the 
best value for (T may be higher than 1, reducing / 1 -o/2/ and 11 -a/31 at the 
expense of j 1 - ~1. It appears, then, that the best value for g may depend on the 
problem and needs to be determined by numerical experiment. However, the 
present analysis indicates that it should lie between 1.5 and 2.0 (cf. the optimum 
value for g of $ in two dimensions [6]). 

With 5 = q = 1 we have, from Eq. (A. 1) 

2=2,jBm; 

A convenient way of introducing these values into Eq. (13) is to separate out the 
frequency terms by writing 

On substitution into Eq. (13) Eq. (14) is obtained with c~i = 2 ,J% and 
x,=2.&. 
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